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ABSTRACT 

Functions arc defined which permit the solution of a special hyperbolic 
system to be expressed as a quadratur of its initial data over the initial surface. 

1. Introduction. In this paper Riemann functions (R.F.) are defined for 
systems of partial differential equations of the type 

(1.1) 

where 

and 

~u)-T-£x U -  AU=O 

U -- (U t, ..., uN); A = (afj), 1 < f , j  <= N 

a t a r  1 
0--~U-\0xl '  ~xN/ 

We will use an elementary method to define a set of functions (the R.F.) that 
enable the value of U ~ at an arbitrary point P, not on the initial surface 0, to be 
expressed as a quadrature of its Cauchy data on 0. 

The subject dealt with here is similar in its nature to that in [1, 2], further 
references can be found in [2]. 

2. Auxiliary concepts and notation. To achieve simplicity we chose without 
loss of generality 0 to be the hyperplane 

N 

(2.1) 0: • x ~ = l  
I = 1  

and the point P to be the origin. Some additional concepts and notation needed 
for our definition of the R.F. are introduced in this section. 

Many of our constructions are associated with subsets {ii, i2,... } of the first 
N positive integers. Since these constructions are in no way dependent on the 
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particular properties of the integers composing the subset it is notationally con- 
venient to chose some fixed but arbitrary subset and symbolize it by a letter. Hence 
H = {il, "", ik} is a fixed subset consisting of k integers ij such that 1 -< ij < N, 
j = 1, ..-,k; and /1 is the set theoretic compliment of H in the first N positive 
numbers. Also needed are two types of sets that are derived from H. The N - k 
sets Hp are defined by 

n p - { H ~ p } ,  peFI; 

and for each p e / t  the k + 1 sets Hpq are defined by 

Ht, e = {Hp@q), qeHp 

where ~ and @ are set theoretic union and subtraction. From these definitions it 
is seen that Hpe = H. 

We associate certain volumes in R N with the subsets H, H e and Hpq. Thus 
letting H* denote any of these subsets or any subset of the first N positive integers 
we define the volume V[H*] by 

{ N } 
V E H * ] -  x=(xl , . . - ,xN) Ixj>O,  Y, x. /= ~ x 1_<- 1 

j = l  JeH* 

and the subset of 0, I[H*], by 

)1 N } I [ / - /* ]  =- x=(xl,...,xN xj>O, Z xj= E xj= 1 .  
j = 1 j e H *  

These definitions are motivated by geometric considerations. Note that I[Hp] is 
the projection of V[Hp~-! along the axis x~ onto 0. Furthermore, V[Hp] is the 
volume contained "between" V[Hp~] and I[Hp] that is "swept out"  when 
V[H~] is projected along x~ onto 0. These sets and ideas can be readily visualized 
in 3- dimensional space. It should be noted that V t = V[il,..., iN] is independent 
of the permutation of il, "',iN and consists of all points enclosed by 0 and the 
hyperplanes xt = 0, i = 1, ..., N. 

The definition of the R.F. employ auxiliary systems of equations that are 
derived from (1.1). Thus the system 

(2.2) L[H] (U) = 0 

is derived from (1.1) by striking from it every/th row and column where l e /7 .  
We also use subsidiary systems formed from the system L[H](U)= 0. These 
subsidiary systems, called the progenitors of L [ H ] ( U ) =  0, are the ( N -  k) 
systems, 

(2.3) L[Hv] (U) = O, 

defined for p e A .  Furthermore L[H](U)g- I~, U q - ~,z~n a~z U s, qeH. 
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3. The definition of the Riemaun functions. The fundamental relation that 
we introduce below is basic for a certain reduction procedure that is to be used 
in the definition of the R.F. This relation expresses a particular quadrature of an 
arbitrary system in terms of quadratures of its progenitor systems and additional 
terms that can be evaluated from the given Cauchy data on the hyperplane 0. 
We derive this fundamental relation in two steps. 

When Green's identities for the volumes V[Hp], p E A are added together we get 

U~ L *[ H p] ( Vl')~dx . . . 
pen ~V[H~] q~H~ p~H JVfH.] ~¢H_ 

(3.1) = ?EpeH qeHZ ffv~H,,,] uqVPqdx . . . .  f1[Hp UqVpqdx''" 

where L*[Hp] is the adjoint operator to L[Hp] and the vector valued functions 
V p = (V pq) p e/7, q e np are defined in V[Hp]. 

The second step in deducing the fundamental relationship is to specify the 
vector valued functions VP= (V p~) as 

i) V p is a solution of L*[Hp] (V p) = 0 in V[Hp] 

(3.2) ii) VP~= 0 on V[Hpa] for q e Hp but q ~ p 

iii) VPP= Z Whtp on V[Hpv ] = V[H] 

where W ~, 1 ~ H are unspecified functions defined in V[H]. 
Since from (1.1) 

(3.3) 5//fv[//] l~'WlatpUPdxe/~ . . . .  fv[H] t~WIL[H](U)Idx '"eH 

we get by using (3.2) in (3.1) that 

(3.4) f,,r Z W'L[H](U),dx . . . .  fvt Z 
] IcH H.] qeH_ 

VPqL[ H p "1 ( U)adx . . . 

pe// qeH_ [H_] 

which is the fundamental relation. 
It expresses the integral 

f Z W'L[I-I] 0.5) (U),dx ... Jr" [HI I eH 

U q VPadx... 

of the system L[H] (U) = 0 in terms of exactly similar type integrals of its pro- 
genitor systems L[Hp] (U) = O, p ~ lq and certain quadratures over l[Hp] = 0 of 
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functions which are determined on 0. Since the integrals on the right hand side of  
(3.4) are of  the exact same form as that in (3.5) these integrals themselves can be 
re-expressed in terms of their own progenitors and further quadratures over 0. 
The process can be repeated until every integral like (3.5) is expressed in terms of  
the original progenitor, (1.1), and quadratures over subsets of  0. 

We now show how a typical component U l of  U can be expressed at the point 
(0, ...,0) as a linear functional of its Cauchy data and certain additional functions 
(the R.F.) over 0. By Green's identity 

f 
(o .. . . .  o)  

(3.6) VUi(O,.. . ,O)= VU~(1,0,.. . ,0) + [VL[1](U)~+U~L*[1](V)I]dx, 
. J (1 ,o  . . . . .  o) 

where L*[1] is the adjoint to L[1]. After chosing V(xt,  0,. . . ,  O) to satisfy 

(3.7) L*[1] (11) = 0 

and 
v ( o , . . . , o )  = 1 

equation (3.6) becomes 

f 
(o . . . . .  o) 

(3.8) ul(0,  . . . ,o) = vv (1, 0, ..., 0) + vL[s]  axl 
J ( t , o  . . . . .  o) 

The integral term in (3.8) is of  the form (3.5) and hence by using the fundamental 
relation (3.4) it can be expressed in terms of  integrals of  known quantities evaluated 
over subsets of  0 and an integral of  the ultimate progenitor system (1.1)integrated 
over V' = V[1, . . . ,NI.  Thus 

Ul(0, ...,0) = {expressions involving the V's defined in (3.2)and (3.7)} 

+ ~, V~L(U)jdxl "'" dxN 
C j = l  

Because L ( U ) =  0 the last term in (3.9) vanishes and hence U~(0, .-.,0) has been 
expressed as a linear functional over 0 with the aid of  the functions defined in 
(3.2) and (3.7); hence these functions are the R.F, for the system (1.1). 
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